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3Introduction to the HDF5 DAOS Project
The HDF Group has a long history collaborating with the Intel team
⁃ During 2013-2016 we created prototypes for
‣ HDF5 VOL architecture 
‣ HDF5 DAOS VOL plugin 

Goal: Provide a seamless way for the HDF5 applications to access data 
stored in DAOS Object Store
⁃ Minimum changes to the source code
⁃ Support both sequential and parallel I/O
⁃ Get full advantage of the DAOS features 
‣ AIO
‣ Transactions
‣ Failure management
‣ Map Objects
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4Introduction to the HDF5 DAOS Project
§ Objectives
⁃ Stabilization of 
‣ HDF5 VOL architecture 
‣ HDF5 VOL plugin APIs
⁃ VOL plugin integration with HDF5 regression tests and command-line tools
⁃ Porting HDF5 applications to DAOS Object Store
⁃ Performance tuning
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5HDF5 DAOS Project Roadmap
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HDF5 VOL Architecture

Virtual Object Layer vs. Virtual File Driver
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7HDF5 VFD vs. HDF5 VOL

VFD

⁃ HDF5 library I/O public interface
‣ Writes/reads offsets and bytes 
‣ POSIX FS: SEC2, MPI I/O, Split, Family
‣ Object Store-like: S3, HSDS

⁃ Extendible and stackable 
⁃ Cannot leverage Object Storage 

properties easily

VOL

⁃ HDF5 internal layer 
‣ Intercepts HDF5 calls and routes them 

to VOL plugin
‣ NATIVE, DAOS, REST, netCDF, ADIOS

⁃ Extendible and stackable 
⁃ Cannot leverage easily HDF5 built-

ins
‣ Datatype conversion, compression, 

selections
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8HDF5 VOL and VFD
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HDF5	APIs

VOL

DAOS Hermes NATIVE ADIOS REST

HDF5	C,	Fortran,	Python,	C++,	Java	Application

HDF5	File

ADIOS	File

VFD

HDF5	File

SEC2 MPI	IO SPLIT S3



9HDF5 VOL Plugin and HDF5 VOL Source

https://bitbucket.hdfgroup.org/projects/HDF5VOL
https://bitbucket.hdfgroup.org/projects/HDFFV/repos/hdf5/browse
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HDF5 DAOS VOL Plugin

Technical Considerations

1
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11HDF5 to DAOS Mapping

HDF5

§ HDF5 File
§ HDF5 Group
⁃ Link name
⁃ OID or PATH

§ HDF5 Dataset
⁃ Chunk coordinates
⁃ Dataset values in the chunk

§ HDF5 Named Datatype
§ HDF5 Map

DAOS

§ DAOS Container
§ DAOS Object
⁃ dkey
⁃ value

§ DAOS Object
⁃ dkey
⁃ value

§ DAOS Object
§ DAOS Object
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12
HDF5 Programming Model for using VOL

§ Currently applications have to use hard-coded VOL specific APIs to 
initialize and use the plugin!
⁃ Burden on application
⁃ Not portable between different VOL plugins

§ Programming Model with HDF5 DAOS VOL plugin:
⁃ Initialize DAOS VOL plugin
‣ H5daos_init  will be deprecated
‣ H5VLregister
‣ H5VLunregister ?
⁃ Set HDF5 access property list to use DAOS VOL plugin
‣ H5Pset_fapl_daos will be deprecated
‣ H5Pset_vol
⁃ Use access property list to create or open DAOS container (HDF5 file)
⁃ Follow HDF5 programming model to manage objects in the container (in the file)
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13Unresolved Design Issues
§ Finding, loading and initializing a VOL driver
§ HDF5 VOL or VOL plugin specific issues
§ HDF5 Tools
§ HDF5 Testing
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14Finding, loading and initializing a VOL driver
§ How to tell HDF5 which VOL plugin to use and how to pass required 
information?
§ Possible options
⁃ Identifier
⁃ Filename as URI
⁃ Environment variables
⁃ Configuration file
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15Finding, loading and initializing a VOL driver
§ Filename as URI
⁃ Similar to HTTP URL
⁃ Register URI scheme and VOL plugin with The HDF Group
‣ URI scheme disctates which VOL plugin to use
⁃ VOL parameters can be passed as part of URI string using reserved character 

(TBD) to separate filename and parameters
⁃ hdf5:///home/user/file.h5?vol_param1=abc?vol_param2=xyz 

§ Will this approach work with stackable VOLs?
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16Finding, loading and initializing a VOL driver
§ Environment variables
⁃ Flexible 
‣ Easy to update, to overwrite the default VOL plugin settings, etc.
‣ Used by HDF5 for other features
⁃ Requires a standard (as with URI) for passing information
‣ All VOL plugins will need to follow the standard
‣ May not work for some VOL plugins (e.g., username and password are required for 

accessing file)
§ Configuration file
⁃ Flexible
⁃ Requires a standard that both HDF5 library and VOL plugins should follow

16



17HDF5 VOL and VOL plugin specific issues

§ Non-exposed private routines and structure useful for a VOL plugin 
⁃ Copying dataspace selection
⁃ Functions to deal with “set operations” on the selections
⁃ Datatype conversion functions that need background conversion buffer

§ HDF5 References
⁃ References to HDF5 objects and references to sub-regions in datasets
⁃ Use addresses of the objects in the file
⁃ Need to be unified into a single “token” that can be implemented by a VOL plugin
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18HDF5 command-line tools
§ Issues are similar to any other HDF5 application that uses VOL plugin
⁃ Rely on HDF5 library to do “right” thing to find, load, and set up VOL plugin

§ Need a common way to specify a VOL plugin using command-line 
parameter
§ Build issues
⁃ VOL plugin cannot be built before HDF5 library, tools cannot be built before VOL 

plugin built, but tools are built at the same time when HDF5 library is built
⁃ Solution: HDF5 command-line tools has to be “VOL plugin” agnostic, i.e., we 

need “finding, loading, and initializing” process performed by the HDF5 library.
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19HDF5 Testing
§ How to test HDF5 library with different VOL plugins?
⁃ Current HDF5 test suite consist of unit tests for testing library internals, APIs, 

and features
⁃ The test suite cannot be easily used with arbitrary settings like property lists, 

VFDs and  VOL plugins
⁃ Work needs to be done to separate tests for HDF5 “native” specific VOL and 

general VOL plugins
‣ Approach
‣ Add test suite that was created for REST VOL and can be used by DAOS VOL
‣ Refactor existing HDF5 test suite as we move forward
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20HDF5 Map Object
§ HDF5 map object (key-value store) is extension to “classical” HDF5 data model
⁃ HDF5 uses key-value stores internally but doesn’t expose a generic key-value store to the API.

§ Application uses HDF5 map object to index information stored in HDF5 file
⁃ Use case (NASA JPSS data processing): find a dataset in a file with an attribute (or attributes) 

with a particular name and value(s), and run analytics on the dataset array.
⁃ Currently, one has to open all datasets in the file and read all attributes to find the one that is 

needed.
⁃ One can use map object to store ALL attributes (name, <value, object address or path>)

§ New HDF5 Map APIs
⁃ Available only with DAOS plugin
⁃ H5M interface with the following operations
‣ Create, open, iterate
‣ Set/get key-value pair
‣ Check if key exists
‣ Get datatypes for keys ad values
‣ Get number of key-value pairs store in the map object 
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Asynchronous I/O

2
1



22Motivation
§ Time on HPC clusters is very valuable
§ With traditional I/O, when waiting for write to complete, processors 
are idle
⁃ Wasted time that could be used for computation

§ Asynchronous I/O: perform I/O in the background while processors 
continue computation
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23Programming Model
§ Enable AIO on HDF5 file via file access property list (FAPL)
⁃ H5Pset_async(fapl_id)

⁃ All operations are async that do not query file or hold buffer
‣ Do not need to rework existing applications

§ Enable AIO on individual operation via dataset transfer property list 
(DXPL)
⁃ H5Pset_async_op(dxpl_id)

⁃ Operations using this DXPL are always asynchronous
‣ Application must ensure completion before reusing buffer (for write) or checking result 

(for read)
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24Implementation
§ Threadless progress engine
⁃ To make progress, check for AIO task completion, execute callbacks for 

completed tasks, and initiate execution of dependency children
⁃ Make progress whenever entering the HDF5/DAOS layer

§ Use DAOS task API to implement much of the progress engine
⁃ Must integrate support for MPI asynchronous operations

§ App may spawn dedicated progress thread
⁃ No need to call into HDF5/DAOS layer to make progress
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25Internal AIO
§ DAOS and MPI operations within an HDF5 operation can always be 
made asynchronously even if not requested through HDF5 API
⁃ Wait at end of HDF5 operation if not asynchronous HDF5 op

§ Create dependencies between DAOS and MPI operations as needed
§ On metadata write operations, place all operations in a DAOS 
transaction to make the HDF5 operation atomic
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26
Internal AIO Example: H5Gopen() 
(Independent)

§ Must read link from parent group 
to retrieve target group’s DAOS ID
§ Using DAOS ID, read metadata 
from group’s DAOS object
§ Deserialize metadata and 
assemble in-memory group 
structure
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27External AIO
§ When HDF5 operations depend on each other, do not block on parent 
operation
§ Create graph of DAOS/MPI operations that spans multiple HDF5 
operations
§ Use the same progress engine to manage the overall AIO graph
§ Only applicable when AIO requested on the HDF5 file
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28External AIO Example

§ Open a group
§ Open two datasets in the group
§ Read from one dataset, write to 
then read from the other
§ Close the file
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29Possible Issues
§ Error reporting is more difficult – if an operation fails long after it 
started how do we inform the application which operation failed?
⁃ Rollback entire file to state before failed operation?

§ Increased code complexity (both for internal implementation and 
applications)
§ Application may not be able to progress if it can’t modify the write 
buffer (general AIO issue)
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30Implementation Roadmap
§ Build in AIO support at low level as operations are implemented
⁃ Internal AIO

§ Add in support for external AIO
§ Add support for HDF5 AIO API when available
§ Add tests as features are implemented
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