
Copyright 2018, The HDF Group

November 14, 2018

HDF5 DAOS VOL Plugin

Scot Breitenfeld, Neil Fortner,
Jordan Henderson, Jerome Soumagne,
Elena Pourmal

2Outline

§ Introduction to The HDF Group HDF5 DAOS project
§ HDF5 VOL Architecture
§ HDF5 DAOS VOL Plugin

2

3Introduction to the HDF5 DAOS Project
The HDF Group has a long history collaborating with the Intel team
⁃ During 2013-2016 we created prototypes for
‣ HDF5 VOL architecture
‣ HDF5 DAOS VOL plugin

Goal: Provide a seamless way for the HDF5 applications to access data
stored in DAOS Object Store
⁃ Minimum changes to the source code
⁃ Support both sequential and parallel I/O
⁃ Get full advantage of the DAOS features
‣ AIO
‣ Transactions
‣ Failure management
‣ Map Objects

3

4Introduction to the HDF5 DAOS Project
§ Objectives
⁃ Stabilization of
‣ HDF5 VOL architecture
‣ HDF5 VOL plugin APIs
⁃ VOL plugin integration with HDF5 regression tests and command-line tools
⁃ Porting HDF5 applications to DAOS Object Store
⁃ Performance tuning

4

5HDF5 DAOS Project Roadmap

5

6

HDF5 VOL Architecture

Virtual Object Layer vs. Virtual File Driver

6

7HDF5 VFD vs. HDF5 VOL

VFD

⁃ HDF5 library I/O public interface
‣ Writes/reads offsets and bytes
‣ POSIX FS: SEC2, MPI I/O, Split, Family
‣ Object Store-like: S3, HSDS

⁃ Extendible and stackable
⁃ Cannot leverage Object Storage

properties easily

VOL

⁃ HDF5 internal layer
‣ Intercepts HDF5 calls and routes them

to VOL plugin
‣ NATIVE, DAOS, REST, netCDF, ADIOS

⁃ Extendible and stackable
⁃ Cannot leverage easily HDF5 built-

ins
‣ Datatype conversion, compression,

selections

7

8HDF5 VOL and VFD

8

HDF5	APIs

VOL

DAOS Hermes NATIVE ADIOS REST

HDF5	C,	Fortran,	Python,	C++,	Java	Application

HDF5	File

ADIOS	File

VFD

HDF5	File

SEC2 MPI	IO SPLIT S3

9HDF5 VOL Plugin and HDF5 VOL Source

https://bitbucket.hdfgroup.org/projects/HDF5VOL
https://bitbucket.hdfgroup.org/projects/HDFFV/repos/hdf5/browse

9

10

HDF5 DAOS VOL Plugin

Technical Considerations

1
0

11HDF5 to DAOS Mapping

HDF5

§ HDF5 File
§ HDF5 Group
⁃ Link name
⁃ OID or PATH

§ HDF5 Dataset
⁃ Chunk coordinates
⁃ Dataset values in the chunk

§ HDF5 Named Datatype
§ HDF5 Map

DAOS

§ DAOS Container
§ DAOS Object
⁃ dkey
⁃ value

§ DAOS Object
⁃ dkey
⁃ value

§ DAOS Object
§ DAOS Object

11

12
HDF5 Programming Model for using VOL

§ Currently applications have to use hard-coded VOL specific APIs to
initialize and use the plugin!
⁃ Burden on application
⁃ Not portable between different VOL plugins

§ Programming Model with HDF5 DAOS VOL plugin:
⁃ Initialize DAOS VOL plugin
‣ H5daos_init will be deprecated
‣ H5VLregister
‣ H5VLunregister ?
⁃ Set HDF5 access property list to use DAOS VOL plugin
‣ H5Pset_fapl_daos will be deprecated
‣ H5Pset_vol
⁃ Use access property list to create or open DAOS container (HDF5 file)
⁃ Follow HDF5 programming model to manage objects in the container (in the file)

12

13Unresolved Design Issues
§ Finding, loading and initializing a VOL driver
§ HDF5 VOL or VOL plugin specific issues
§ HDF5 Tools
§ HDF5 Testing

13

14Finding, loading and initializing a VOL driver
§ How to tell HDF5 which VOL plugin to use and how to pass required
information?
§ Possible options
⁃ Identifier
⁃ Filename as URI
⁃ Environment variables
⁃ Configuration file

14

15Finding, loading and initializing a VOL driver
§ Filename as URI
⁃ Similar to HTTP URL
⁃ Register URI scheme and VOL plugin with The HDF Group
‣ URI scheme disctates which VOL plugin to use
⁃ VOL parameters can be passed as part of URI string using reserved character

(TBD) to separate filename and parameters
⁃ hdf5:///home/user/file.h5?vol_param1=abc?vol_param2=xyz

§ Will this approach work with stackable VOLs?

15

16Finding, loading and initializing a VOL driver
§ Environment variables
⁃ Flexible
‣ Easy to update, to overwrite the default VOL plugin settings, etc.
‣ Used by HDF5 for other features
⁃ Requires a standard (as with URI) for passing information
‣ All VOL plugins will need to follow the standard
‣ May not work for some VOL plugins (e.g., username and password are required for

accessing file)
§ Configuration file
⁃ Flexible
⁃ Requires a standard that both HDF5 library and VOL plugins should follow

16

17HDF5 VOL and VOL plugin specific issues

§ Non-exposed private routines and structure useful for a VOL plugin
⁃ Copying dataspace selection
⁃ Functions to deal with “set operations” on the selections
⁃ Datatype conversion functions that need background conversion buffer

§ HDF5 References
⁃ References to HDF5 objects and references to sub-regions in datasets
⁃ Use addresses of the objects in the file
⁃ Need to be unified into a single “token” that can be implemented by a VOL plugin

17

18HDF5 command-line tools
§ Issues are similar to any other HDF5 application that uses VOL plugin
⁃ Rely on HDF5 library to do “right” thing to find, load, and set up VOL plugin

§ Need a common way to specify a VOL plugin using command-line
parameter
§ Build issues
⁃ VOL plugin cannot be built before HDF5 library, tools cannot be built before VOL

plugin built, but tools are built at the same time when HDF5 library is built
⁃ Solution: HDF5 command-line tools has to be “VOL plugin” agnostic, i.e., we

need “finding, loading, and initializing” process performed by the HDF5 library.

18

19HDF5 Testing
§ How to test HDF5 library with different VOL plugins?
⁃ Current HDF5 test suite consist of unit tests for testing library internals, APIs,

and features
⁃ The test suite cannot be easily used with arbitrary settings like property lists,

VFDs and VOL plugins
⁃ Work needs to be done to separate tests for HDF5 “native” specific VOL and

general VOL plugins
‣ Approach
‣ Add test suite that was created for REST VOL and can be used by DAOS VOL
‣ Refactor existing HDF5 test suite as we move forward

19

20HDF5 Map Object
§ HDF5 map object (key-value store) is extension to “classical” HDF5 data model
⁃ HDF5 uses key-value stores internally but doesn’t expose a generic key-value store to the API.

§ Application uses HDF5 map object to index information stored in HDF5 file
⁃ Use case (NASA JPSS data processing): find a dataset in a file with an attribute (or attributes)

with a particular name and value(s), and run analytics on the dataset array.
⁃ Currently, one has to open all datasets in the file and read all attributes to find the one that is

needed.
⁃ One can use map object to store ALL attributes (name, <value, object address or path>)

§ New HDF5 Map APIs
⁃ Available only with DAOS plugin
⁃ H5M interface with the following operations
‣ Create, open, iterate
‣ Set/get key-value pair
‣ Check if key exists
‣ Get datatypes for keys ad values
‣ Get number of key-value pairs store in the map object

20

21

Asynchronous I/O

2
1

22Motivation
§ Time on HPC clusters is very valuable
§ With traditional I/O, when waiting for write to complete, processors
are idle
⁃ Wasted time that could be used for computation

§ Asynchronous I/O: perform I/O in the background while processors
continue computation

22

23Programming Model
§ Enable AIO on HDF5 file via file access property list (FAPL)
⁃ H5Pset_async(fapl_id)

⁃ All operations are async that do not query file or hold buffer
‣ Do not need to rework existing applications

§ Enable AIO on individual operation via dataset transfer property list
(DXPL)
⁃ H5Pset_async_op(dxpl_id)

⁃ Operations using this DXPL are always asynchronous
‣ Application must ensure completion before reusing buffer (for write) or checking result

(for read)

23

24Implementation
§ Threadless progress engine
⁃ To make progress, check for AIO task completion, execute callbacks for

completed tasks, and initiate execution of dependency children
⁃ Make progress whenever entering the HDF5/DAOS layer

§ Use DAOS task API to implement much of the progress engine
⁃ Must integrate support for MPI asynchronous operations

§ App may spawn dedicated progress thread
⁃ No need to call into HDF5/DAOS layer to make progress

24

25Internal AIO
§ DAOS and MPI operations within an HDF5 operation can always be
made asynchronously even if not requested through HDF5 API
⁃ Wait at end of HDF5 operation if not asynchronous HDF5 op

§ Create dependencies between DAOS and MPI operations as needed
§ On metadata write operations, place all operations in a DAOS
transaction to make the HDF5 operation atomic

25

26
Internal AIO Example: H5Gopen()
(Independent)

§ Must read link from parent group
to retrieve target group’s DAOS ID
§ Using DAOS ID, read metadata
from group’s DAOS object
§ Deserialize metadata and
assemble in-memory group
structure

26

27External AIO
§ When HDF5 operations depend on each other, do not block on parent
operation
§ Create graph of DAOS/MPI operations that spans multiple HDF5
operations
§ Use the same progress engine to manage the overall AIO graph
§ Only applicable when AIO requested on the HDF5 file

27

28External AIO Example

§ Open a group
§ Open two datasets in the group
§ Read from one dataset, write to
then read from the other
§ Close the file

28

29Possible Issues
§ Error reporting is more difficult – if an operation fails long after it
started how do we inform the application which operation failed?
⁃ Rollback entire file to state before failed operation?

§ Increased code complexity (both for internal implementation and
applications)
§ Application may not be able to progress if it can’t modify the write
buffer (general AIO issue)

29

30Implementation Roadmap
§ Build in AIO support at low level as operations are implemented
⁃ Internal AIO

§ Add in support for external AIO
§ Add support for HDF5 AIO API when available
§ Add tests as features are implemented

30

31Acknowledgements
We thank Intel team for feedback and guidance.

Special thanks to

Johann Lombardi, and Mohamad Chaarawi (Intel) for DAOS technical
insights.

Quincey Koziol (NERSC) for helping with the VOL feature integration
into mainstream HDF5.

